

​
Security Assessment

Final Report

Mamo
March 2025

Prepared for Moonwell

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Table of contents
Project Summary...3

Project Scope.. 3
Project Overview... 3

Protocol Overview... 3
Findings Summary.. 4
Severity Matrix...4

Detailed Findings.. 5
Medium Severity Issues..7
M-01 Use of latestAnswer() and missing staleness threshold check allows stale prices to be consumed
during swap orders..7
M-02 backEnd has some unintended authority over users strategies..8
M-03 withdrawal might fail for valid amounts.. 9
Low Severity Issues.. 10
L-01 Users can addStrategy for strategies that are not the latest... 10
L-02 Missing storage __gap variable in BaseStrategy.. 10
L-03 Deposits and withdrawals of strategy tokens would fail for fee-on-transfer tokens...............................12
L-04 Deposits fail due to use of approve() instead of forceApprove() in function depositInternal()...............14
L-05 Calls to recoverERC20() in MamoRegistry.sol would fail for ERC20 tokens that return false on transfer
failure...15
Informational Severity Issues.. 16
I-01. Incomplete pausing mechanism in MamoStrategyRegistry.. 16
I-02. Using view methods when possible... 16
I-03. Current implementation relies on the backEnd to initialize upgraded strategies...................................17
I-04. Missing splitMToken and splitVault validation in ERC20MoonwellMorphoStrategy.initialize().............. 17
I-05. Consider providing strategy owners with revoke CowSwap approval functionality...............................18
I-06. Unused event StrategyRemoved in MamoStrategyRegistry.sol... 18
I-07. Modifiers whenNotPaused and whenPaused are not required on external functions...........................19
I-08. Missing event emission when removing token configuration.. 20
I-09. Lack of incentive for solvers to execute swap orders..20
Gas Optimizations...21
G-01. Function setSlippage() can be optimized.. 21
G-02. Consider caching array length during looping to save gas..22
G-03. Consider commenting out redundant checks from getExpectedOutFromChainlink() function............24

Disclaimer.. 25
About Certora.. 25

​ 2

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Project Summary
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Platform

Mamo

Repo

220a1cba1cdadda9b
795ad5694a5b4ae2
e8902a0

EVM

Project Overview

This document describes the Audit of Mamo using Certora manual code review findings. The work was
undertaken from 20/03/2025 to 25/03/2025

The following contract list is included in our scope:

src/SlippagePriceChecker.sol
src/MamoStrategyRegistry.sol
src/ERC1967Proxy.sol
src/ERC20MoonwellMorphoStrategy.sol
src/BaseStrategy.sol

Protocol Overview

The Mamo protocol enables the deployment of personal strategy contracts that split deposits
between Moonwell and Morpho Vaults for optimized yield. Users maintain complete control of
their strategy contracts with direct deposit/withdrawal rights, while the Mamo backend handles
allocation adjustments and reward management. This creates a managed DeFi experience
without surrendering asset custody.

MamoStrategyRegistry is core to security design, using a whitelist system for trusted
implementations that protects against malicious upgrades. Users decide when to upgrade their
strategies, not the backend. Protocol implements slippage protection for swaps and clear
permission boundaries for all operations.

​ 3

https://github.com/moonwell-fi/mamo-contracts
https://github.com/moonwell-fi/mamo-contracts/commit/220a1cba1cdadda9b795ad5694a5b4ae2e8902a0
https://github.com/moonwell-fi/mamo-contracts/commit/220a1cba1cdadda9b795ad5694a5b4ae2e8902a0
https://github.com/moonwell-fi/mamo-contracts/commit/220a1cba1cdadda9b795ad5694a5b4ae2e8902a0

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical - - -

High - - -

Medium 3 3 3

Low 5 5 5

Informational 9 9 4

Gas Optimizations 3 3 2

Total 20 20 11

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

​ 4

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Detailed Findings

ID Title Severity Status

M-01 Use of latestAnswer() and
missing staleness threshold
check allows stale prices to be
consumed during swap orders

Medium Fixed and reviewed.

M-02 backEnd has some unintended
authority over users strategies

Medium Fixed and reviewed.

M-03 withdrawal might fail for valid
amounts.

Medium Fixed and reviewed.

L-01 Users can addStrategy for
strategies that are not the latest.

Low Fixed and reviewed.

L-02 Missing storage __gap variable
in BaseStrategy

Low Fixed and reviewed.

L-03 Deposits and withdrawals of
strategy tokens would fail for
fee-on-transfer tokens.

Low Acknowledged.
Documentation added.

L-04 Deposits fail due to use of
approve() instead of
forceApprove() in function
depositInternal()

Low Fixed and reviewed.

L-05 Calls to recoverERC20() in
MamoRegistry.sol would fail for
ERC20 tokens that return false
on transfer failure

Low Fixed and reviewed.

I-01 Incomplete pausing mechanism Informational Acknowledged.

​ 5

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

in MamoStrategyRegistry

I-02 Using view methods when
possible

Informational Acknowledged.

I-03 Current implementation relies
on the backEnd to initialize
upgrade strategies.

Informational Acknowledged.

I-04 Missing splitMToken and
splitVault validation in
ERC20MoonwellMorphoStrategy.
initialize()

Informational Fixed and reviewed.

I-05 Consider providing strategy
owners with revoke CowSwap
approval functionality

Informational Fixed and reviewed.

I-06 Unused event StrategyRemoved
in MamoStrategyRegistry.sol

Informational Fixed and reviewed.

I-07 Modifiers whenNotPaused and
whenPaused are not required on
external functions

Informational Fixed and reviewed.

I-08 Missing event emission when
removing token configuration

Informational Fixed and reviewed.

I-09 Lack of incentive for solvers to
execute swap orders

Informational Acknowledged.

G-01 Function setSlippage() can be
optimized

Gas Optimization Fixed and reviewed.

G-02 Consider caching array length
during looping to save gas

Gas Optimization Fixed and reviewed.

​ 6

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

G-03 Consider commenting checks in
getExpectedOutFromChainlink()

Gas Optimization Acknowledged.

Medium Severity Issues

M-01 Use of latestAnswer() and missing staleness threshold check allows stale
prices to be consumed during swap orders

Severity: Medium Impact: Medium Likelihood: Low

Files:
src/SlippagePriceChec
ker.sol

Status: Fixed and reviewed.

Description: Function getExpectedOutFromChainlink() currently uses function latestAnswer()
instead of latestRoundData().

int256 _latestAnswer = _priceFeed.latestAnswer();
require(_latestAnswer > 0, "Latest answer must be positive");

According to the Chainlink documentation, latestAnswer() is deprecated and using
latestRoundData() is recommended instead, since it provides an updatedAt parameter, which
can be used by contracts to check when the token price was last updated by Chainlink. If the
price has not been updated within the heartbeat of the feed, the price is considered stale. For
example, the ETH/USD price feed on mainnet has its heartbeat as 3600 seconds, after which the
price should not be considered safe to consume.

Since this stale price would be used to determine the minimum strategy tokens to receive during
reward token to strategy token swap orders, it is possible for it to either be inflated or deflated

​ 7

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

than the actual price, causing either the swap to fail or the output strategy tokens received by
the strategy owner to be lesser.

Recommendations: It is recommended to use latestRoundData() and use the updatedAt
parameter to perform a staleness check on the price.

Customer’s response: Acknowledged.

Fix Review: Fixed in 7fb2b19.

​ 8

https://github.com/moonwell-fi/mamo-contracts/pull/5/commits/7fb2b19a3ba033896c159c649571c78bcc3deae4

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

M-02 backEnd has some unintended authority over users strategies

Severity: Medium Impact: High Likelihood: very Low

Files:
src/MamoStrategyRegi
stry.sol

Status: Fixed and reviewed.

Description: addStrategy lacks user signature, and upgradeStrategy does not specify the
intended implementation, in combination, this means that compromised backend can front run
users upgradeStrategy transaction and create a malicious latest upgrade, this in turn can drain
those users funds.

Recommendations:

1.​ add a users signature to addStrategies
2.​ Add a field to upgradeStrategy address implementation, so that users can specify their

intended implementation to upgrade to.

Customer’s response:

Recommendation 1: The strategy contracts will be deployed in one of two ways:

- Through a web frontend with a standard wallet interaction, which could request a signature
from the owner's wallet

- By an AI agent through an agentic interaction with Agent Commerce Protocol or a chat
interface where an Ethereum signature can't easily be generated

Because the strategy contract must support both creation methods, we chose not to require a
signature on deployment, and will endeavor to make sure that all creation methods use a
programmatic way to determine the owner's Ethereum address correctly. In the case of Agent
Commerce Protocol, the requesting agent knows their public address. In addition, the deposit

​ 9

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

method can only be called by the owner, further protecting the requesting owner from losing
funds by inadvertently depositing to a strategy contract that isn't owned by them.

Recommendation 2: This is acknowledged and would be fixed.

Fix Review: Fixed in 7f309ff

​ 10

https://github.com/moonwell-fi/mamo-contracts/blob/7f309ff9e8ee169e89ccce899c1f0520c12774d9/src/MamoStrategyRegistry.sol#L87

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

M-03 withdrawal might fail for valid amounts.

Severity: Medium Impact: Medium Likelihood: High

Files:
src/ERC20MoonwellM
orphoStrategy.sol

Status: Fixed and reviewed.

Description: A strategic withdrawal should allow each amount that is greater than 0 but less
than the total balance denoted by getTotalBalance. However, in order to maintain the ratio in
the Moonwell market and Morpho vault, that amount is split based on splitMToken and
splitVault.

The assumption that the morpho vault and moonwell market maintain the ratio of assets might
break in one of the following scenarios:

1.​ It is incorrect in cases where one of the markets yields more rewards than the other.
2.​ Rounding after a split does not properly account for all the assets.

 This would lead users to have valid withdrawal requests fail unexpectedly. Which could lead to
frustration, loss of opportunity, and locked funds.

Recommendations: There are multiple avenues that might solve this problem.

1.​ Maintain the ratio but limit the amount. This would mean that the withdrawal would not revert,
but a smaller amount would be withdrawn to the user.

2.​ Allow for an alternate API that would withdraw without enforcing the ratio. This would break the
dual custodial architecture and would no longer provide optimal yields.

3.​ Allow for users to “rebalance” the assets to the optimal ratio and then withdraw to the best effort
while maintaining the optimal ratio. This would require a new API development and might still not
allow for Full withdrawal, but it should provide fewer assets locked in the system until a backend
can rebalance.

Customer’s response: Even though the proposed scenario is not exploitable, this issue is still
acknowledged, Will Fix

Fix Review: Fixed in c0365a3.
​ 11

https://github.com/moonwell-fi/mamo-contracts/pull/5/commits/c0365a3dc1a0e1b5551834ce4a4fb40ea183a334

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Low Severity Issues

L-01 Users can addStrategy for strategies that are not the latest.

Severity: Low Impact: Low Likelihood: Low

Files:
src/MamoStrategyRegi
stry.sol

Status: Fixed and reviewed.

Description: addStrategies allows the addition of strategies that have been updated in
whitelistImplementation.

Recommendations: require that the implementation is the latest implementation for that
strategy ID.

Customer’s response: Acknowledged.

Fix Review: Fixed in 83046b0

​ 12

https://github.com/moonwell-fi/mamo-contracts/pull/5/commits/83046b066cd7e9c6b05987fdc09cbc31fc7354af

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

L-02 Missing storage __gap variable in BaseStrategy

Severity: Low Impact: Medium Likelihood: Low

Files:
src/BaseStrategy.sol

Status: Fixed and reviewed.

Description: The Contract BaseStrategy is inherited by the ERC20MoonwellMorphoStrategy
contract. Both these contracts have their own state variables declared. If in a future upgrade, a
new variable is introduced in the BaseStrategy parent contract, it would cause a storage collision
as this new variable would be accessing the storage slot from the child contract.

Storage gaps are a convention for reserving storage slots in a base contract, allowing future versions
of that contract to use up those slots without affecting the storage layout of child contracts.

More can be read about storage slot collisions and storage gaps in the Openzeppelin documentation.

Recommendations: It is recommended to add an uint256[49] __gap; variable at the end of the state
variable declarations in BaseStrategy. In case the ERC20MoonwellMorphoStrategy and
SlippagePriceChecker contracts become parent contracts in the future, it is also recommended to
add these storage gap variables in the respective contracts.

Customer’s response: Acknowledged.

Fix Review: Fixed in 829ff24

​ 13

https://docs.openzeppelin.com/upgrades-plugins/writing-upgradeable#modifying-your-contracts
https://github.com/moonwell-fi/mamo-contracts/blob/829ff241b586c8be25b798db6b80a0f9c330fe3c/src/BaseStrategy.sol#L27

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

L-03 Deposits and withdrawals of strategy tokens would fail for fee-on-transfer
tokens

Severity: Low Impact: Low Likelihood: Medium

Files:
src/ERC20MoonwellM
orphoStrategy.sol

Status: Acknowledged.
Documentation added.

Description: When depositing in the ERC20MoonwellMorphoStrategy contract, we assume that
post the safeTransferFrom() operation, the contract receives exactly the parameter `amount`
tokens.

function deposit(uint256 amount) external onlyStrategyOwner {
 require(amount > 0, "Amount must be greater than 0");

 // Transfer tokens from the owner to this contract
 token.safeTransferFrom(msg.sender, address(this), amount); // <<

 // Deposit the funds according to the current split
 depositInternal(amount);

 emit Deposit(address(token), amount);
}

​
This is not true in case the strategy token is a fee-on-transfer ERC20 token (e.g. USDT, if fee is
activated on transfers). Since the contract receives fewer tokens than intended, depositing into
Moonwell and Metamorpho would fail due to the lack of tokens.

Recommendations: On deposit, it is recommended to check the pre-transfer and post-transfer
balance of the contract to ensure the correct amount is recorded to deposit into Moonwell and

​ 14

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Morpho. On withdrawals, it is recommended to introduce a fee buffer amount to allow the strategy
owner to adjust for fees.

require(token.balanceOf(address(this)) >= amount - feeBuffer, "Withdrawal failed:
insufficient funds");
token.safeTransfer(msg.sender, amount - feeBuffer);

Customer’s response: Acknowledged. We do not intend to support any fee-on-transfer tokens.

Fix Review: Added documentation in b22b7bc.

​ 15

https://github.com/moonwell-fi/mamo-contracts/pull/5/commits/b22b7bcd99c8c8405c5075bfa891e216a19a9de6

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

L-04 Deposits fail due to use of approve() instead of forceApprove() in function
depositInternal()

Severity: Low Impact: Low Likelihood: Medium

Files:
src/ERC20MoonwellM
orphoStrategy.sol

Status: Fixed and reviewed.

Description: Some ERC20 tokens return a value of false instead and do not revert. While this token
behaviour conforms to the EIP-20 specification, it is not supported in ERC20MoonwellMorphoStrategy.
Due to this, failed approve() transactions are assumed to be successful since the return value is not
checked. Eventually, the mint() and deposit() calls to Moonwell and Morpho would revert due to the lack
of approved token.

// Deposit into each protocol according to the split
 if (targetMoonwell > 0) {

 token.approve(address(mToken), targetMoonwell);

 // Mint mToken with token
 require(mToken.mint(targetMoonwell) == 0, "MToken mint failed");
 }

 if (targetMetaMorpho > 0) {
 token.approve(address(metaMorphoVault), targetMetaMorpho);

 // Deposit token into MetaMorpho
 metaMorphoVault.deposit(targetMetaMorpho, address(this));
 }

Recommendations: It is recommended to use forceApprove() from the SafeERC20.sol Openzeppelin library.

Customer’s response: Acknowledged.

Fix Review: Fixed in cd263ae

​ 16

https://github.com/moonwell-fi/mamo-contracts/blob/cd263ae64bb6efe69fd6d6b2173f2fe8c6495446/src/ERC20MoonwellMorphoStrategy.sol#L348C1-L361C1

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

L-05 Calls to recoverERC20() in MamoRegistry.sol would fail for ERC20 tokens that
return false on transfer failure

Severity: Low Impact: Medium Likelihood: Low

Files:
src/MamoStrategyRegi
stry.sol

Status: Fixed and reviewed.

Description: Some ERC20 tokens return a value of false instead and do not revert. While this
token behaviour conforms to the EIP-20 specification, it is not supported in the
MamoStrategyRegistry. Due to this, failed transfer() transactions are assumed to be successful
since the return value is not checked.

function recoverERC20(address tokenAddress, address to, uint256 amount) external
onlyRole(DEFAULT_ADMIN_ROLE) {
 require(to != address(0), "Cannot send to zero address");
 require(amount > 0, "Amount must be greater than 0");

 IERC20(tokenAddress).transfer(to, amount);
 }

Recommendations: It is recommended to use safeTransfer() from Openzeppelin's SafeERC20.sol
library

Customer’s response: Confirmed

Fix Review: Fixed in d1a0a18.

​ 17

https://github.com/moonwell-fi/mamo-contracts/pull/5/commits/d1a0a18d1bcfc393422101801ffe792f41380c9e

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Informational Severity Issues

I-01. Incomplete pausing mechanism in MamoStrategyRegistry

Description: MamoStrategyRegistry allows for pausing the contract, the current pausing
mechanism still allows some functionality: the view methods, recoverERC20, and
whitelistImplementation.
It is recommended that if a pausing mechanism is implemented to document which features are
exempt from pause, either in comments or in modifiers.
It is also considered best practice to have pausing granularity. So that the code is more
future-proof and has better maintainability.

Recommendation: Allow for enumeration of pausing behaviors where guardians have the ability
to fully pause the entire contract.

Customer’s response: Partial Acknowledged. We would like to investigate how this might be
fixed at the design level at a later date.

Fix Review: Not Applicable.

I-02. Using view methods when possible

Description: in ERC20MoonwellMorphoStrategy there are a few methods that could be used as
view but are not, getTotalBalance for example, it is recommended to use view methods when
possible, this would make the code easier to audit and debug.

Recommendation: Use the view for methods that don’t change the storage.

Note: only getTotalBalance is missing the view modifier.

Customer’s response: Fix not currently possible. We use a call to Moonwell token which is not
view, so this method cannot be view.

Fix Review: Not Applicable.

​ 18

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

I-03. Current implementation relies on the backEnd to initialize upgraded strategies.

Description: The current implementation implies that the backEnd needs to allow for a push API
to initialize newly upgraded strategies, there could be other design patterns that might lift this
requirement and allow initialization in the same transaction as the upgrade.

Recommendation: Document the responsibility of the backEnd, or implement a push design
pattern that would initialize the strategy as it's being upgraded.

Customer’s response: Acknowledged, this is intended, would not fix.

Fix Review: Not applicable.

I-04. Missing splitMToken and splitVault validation in
ERC20MoonwellMorphoStrategy.initialize()

Description: In the initialize() function, we perform validation for all the members of struct
InitParams except for the splitMToken and splitVault members. The sum of these two variables
should be validated to be 10000 as done in the updatePosition() function.

While this does not pose a threat to the strategy tokens, it would lead to some of the strategy
tokens being unallocated and sitting idle in the strategy.

Recommendation: In function initialize(), add a require or if conditional to ensure the sum of
splitMToken and splitVault is 10000.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263

​ 19

https://github.com/moonwell-fi/mamo-contracts/blob/cf38263471c72aaec80024d1b815ce1e3f965bc3/src/ERC20MoonwellMorphoStrategy.sol#L116

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

I-05. Consider providing strategy owners with revoke CowSwap approval functionality

Description: In ERC20MoonwellMorphoStrategy.sol, we only allow strategy owners to approve
the vault relayer. If the strategy owner wants to retrieve reward tokens directly using
BaseStrategy.recoverERC20(), this will not be possible since bots can always frontrun to swap
the reward tokens into strategy tokens.

function approveCowSwap(address tokenAddress) external onlyStrategyOwner {
 // Check if the token has a configuration in the swap checker
 require(slippagePriceChecker.isRewardToken(tokenAddress), "Token not allowed");

 // Approve the vault relayer unlimited
 IERC20(tokenAddress).forceApprove(vaultRelayer, type(uint256).max);
 }

Recommendation: It is recommended to provide strategy owners with the ability to revoke
existing approvals to the relayer.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263 by allowing strategy owners to specify approval amount when
calling function approveCowSwap().

I-06. Unused event StrategyRemoved in MamoStrategyRegistry.sol

Description: Event StrategyRemoved is never utilized in MamoStrategyRegistry. The event name
creates uncertainty whether strategies should be removable or not. Therefore, it is

​ 20

https://github.com/moonwell-fi/mamo-contracts/blob/c23c01ea2bf28f58096a6c4592817c71487fa827/src/ERC20MoonwellMorphoStrategy.sol#L156

C/C++

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

recommended to take appropriate action by either removing the event or implementing
appropriate functionality to remove strategies.

/// @notice Emitted when a strategy is removed for a user
 event StrategyRemoved(address indexed user, address strategy);

Recommendation: If StrategyRemoved event in MamoStrategyRegistry is not intended to be
used, consider removing it. If it should be used, consider implementing functionality to remove
strategies and emitting the event.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263

I-07. Modifiers whenNotPaused and whenPaused are not required on external functions

Description: We do not require the whenNotPaused and whenPaused modifiers on the external
pause() and unpause() functions since they're already present on the internal _pause() and
_unpause() functions.

function pause() external onlyRole(GUARDIAN_ROLE) whenNotPaused {
 _pause();
}

function unpause() external onlyRole(GUARDIAN_ROLE) whenPaused {
 _unpause();
}

Recommendation: It is recommended to remove the modifiers from the external functions.

Customer’s response: Acknowledged.

​ 21

https://github.com/moonwell-fi/mamo-contracts/blob/audit/findings/src/MamoStrategyRegistry.sol

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Fix Review: Fixed in cf38263

I-08. Missing event emission when removing token configuration

Description: When removeConfiguration() is called by the owner to remove a token
configuration, we do not emit an event to record this change. This is contrasting to the function
addTokenConfiguration(), which emits the event TokenConfigured. Emitting an event can help
improvise off-chain monitoring, tracking on block explorers and help frontends to track crucial
changes.

function removeTokenConfiguration(address token) external onlyOwner {
 require(token != address(0), "Invalid token address");
 require(tokenOracleData[token].length > 0, "Token not configured");

 // Clear any existing configurations
 delete tokenOracleData[token];

 // Reset the maxTimePriceValid for the token
 delete maxTimePriceValid[token];
 }

Recommendation: It is recommended to emit an event when a token configuration is deleted.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263

​ 22

https://github.com/moonwell-fi/mamo-contracts/blob/c23c01ea2bf28f58096a6c4592817c71487fa827/src/MamoStrategyRegistry.sol#L113C1-L129C6
https://github.com/moonwell-fi/mamo-contracts/blob/c23c01ea2bf28f58096a6c4592817c71487fa827/src/SlippagePriceChecker.sol#L108

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

I-09. Lack of incentive for solvers to execute swap orders

Description: The ERC20MoonwellMorphoStrategy contract provides an infinite reward token
allowance to the CowSwap team’s GPv2VaultRelayer to execute swap orders. These orders are
filled by the solvers allowlisted by the Cow DAO after a bond has been posted..
​
When an allowlisted solver executes the order, function isValidSignature() performs validation on
the swap order parameters. One of the parameters being validated is the feeAmount. As we can
see in the code snippet below, the issue is that there is no incentive for these solvers to execute
trades due to the validation performed.

require(_order.feeAmount == 0, "Fee amount must be zero");

As per the Cow DAO documentation, when trades are executed, the Protocol collects a fee from
each trade and stores it in the settlement contract.

Recommendation: It is recommended to provide strategy owners or the backend with an
option to configure the maximum fees they are ready to pay on swap orders. This would create
an incentive for solvers to consider executing swap orders for user strategies.

Customer’s response: Acknowledged. We can assume the CowSwap fee is always zero and the
incentive applies through the slippage, meaning that both the bidder and the protocol retain a
percentage of the difference between the execution price and the maximum slippage set by the
user. This would not hurt the ability of the order to be executed.

Fix Review: Not fixed

​ 23

https://docs.cow.fi/cow-protocol/reference/contracts/core/settlement#interactions

Unset

Unset

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Gas Optimizations

G-01. Function setSlippage() can be optimized

Description: In function setSlippage(), we do not need to declare the variable oldSlippage as we
can simply emit the event before the allowedSlippageInBps state variable update.

Instead of this:

 function setSlippage(uint256 _newSlippageInBps) external onlyStrategyOwner {
 require(_newSlippageInBps <= SPLIT_TOTAL, "Slippage exceeds maximum");

 uint256 oldSlippage = allowedSlippageInBps;
 allowedSlippageInBps = _newSlippageInBps;

 emit SlippageUpdated(oldSlippage, _newSlippageInBps);
 }

Use this:​

 function setSlippage(uint256 _newSlippageInBps) external onlyStrategyOwner {
 require(_newSlippageInBps <= SPLIT_TOTAL, "Slippage exceeds maximum");

 emit SlippageUpdated(allowedSlippageInBps, _newSlippageInBps);
 allowedSlippageInBps = _newSlippageInBps;
 }

Recommendation: It is recommended to implement the optimization stated above.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263

​ 24

https://github.com/moonwell-fi/mamo-contracts/blob/c23c01ea2bf28f58096a6c4592817c71487fa827/src/ERC20MoonwellMorphoStrategy.sol#L172

C/C++

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

G-02. Consider caching array length during looping to save gas

Description: In function getExpectedOut() of SlippagePriceChecker.sol, as the configs variable is
a storage reference, it would load the length of the token configuration array on each iteration.

Accessing this costs an SLOAD (100 gas) per iteration. Instead, the length can be cached to an
uint256 memory variable and used in the loop. Since MLOAD operations only cost 3 gas per
iteration, this would save almost 97 gas per iteration.

Instead of this:

for (uint256 i = 0; i < configs.length; i++) {
 priceFeeds[i] = configs[i].chainlinkFeed;
 reverses[i] = configs[i].reverse;
}

Use this:​

uint256 configsLen = configs.length;​
for (uint256 i = 0; i < configsLen; i++) {
 priceFeeds[i] = configs[i].chainlinkFeed;
 reverses[i] = configs[i].reverse;
}

​

Recommendation: It is recommended to implement the optimization stated above.

Customer’s response: Acknowledged.

Fix Review: Fixed in cf38263

​ 25

https://github.com/moonwell-fi/mamo-contracts/blob/c23c01ea2bf28f58096a6c4592817c71487fa827/src/SlippagePriceChecker.sol#L182

C/C++

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

G-03. Consider commenting out redundant checks from getExpectedOutFromChainlink()
function

Description: The following checks in function getExpectedOutFromChainlink() are redundant.
This is because the conditions are already implicitly ensured to be true when the call to function
getExpectedOutFromChainlink() arrives from function getExpectedOut().

require(_priceFeedsLen > 0, "Need at least one price feed");
require(_priceFeedsLen == _reverses.length, "Price feeds and reverses must have same
length");

Recommendation: It is recommended to comment out the checks to ensure they do not
consume unnecessary gas but still serve as a good invariant reference for future developers and
security researchers.

Customer’s response: Acknowledged, Fix won’t be implemented to maintain code readability.

Fix Review: Not Implemented.

​ 26

 ​ ​ ​ ​ ​ ​​ ​ ​ ​

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

​ 27

	​
	Security Assessment
	
	Final Report
	Project Summary
	Project Scope
	Project Overview
	Protocol Overview

	Findings Summary
	Severity Matrix

	Detailed Findings
	Medium Severity Issues
	M-01 Use of latestAnswer() and missing staleness threshold check allows stale prices to be consumed during swap orders
	M-02 backEnd has some unintended authority over users strategies
	M-03 withdrawal might fail for valid amounts.
	Low Severity Issues
	L-01 Users can addStrategy for strategies that are not the latest.
	L-02 Missing storage __gap variable in BaseStrategy
	
	L-03 Deposits and withdrawals of strategy tokens would fail for fee-on-transfer tokens
	
	
	
	
	
	
	
	
	
	
	
	
	L-04 Deposits fail due to use of approve() instead of forceApprove() in function depositInternal()
	L-05 Calls to recoverERC20() in MamoRegistry.sol would fail for ERC20 tokens that return false on transfer failure
	Informational Severity Issues
	I-01. Incomplete pausing mechanism in MamoStrategyRegistry
	I-02. Using view methods when possible
	
	I-03. Current implementation relies on the backEnd to initialize upgraded strategies.
	I-04. Missing splitMToken and splitVault validation in ERC20MoonwellMorphoStrategy.initialize()
	
	I-05. Consider providing strategy owners with revoke CowSwap approval functionality
	I-06. Unused event StrategyRemoved in MamoStrategyRegistry.sol
	I-07. Modifiers whenNotPaused and whenPaused are not required on external functions
	I-08. Missing event emission when removing token configuration
	I-09. Lack of incentive for solvers to execute swap orders
	
	Gas Optimizations
	G-01. Function setSlippage() can be optimized
	G-02. Consider caching array length during looping to save gas
	G-03. Consider commenting out redundant checks from getExpectedOutFromChainlink() function

	
	Disclaimer
	
	
	About Certora

